Informatics and Engineering Systems Faculty Publications and Presentations

Document Type

Article

Publication Date

1-18-2024

Abstract

A wide range of critical infrastructures are connected via wide area networks as well as the Internet-of-Thing (IoT). Apart from natural disasters, these infrastructures, providing services such as electricity, water, gas, and Internet, are vulnerable to terrorist attacks. Clearly, damages to these infrastructures can have dire consequences on economics, health services, security and safety, and various business sectors. An infrastructure network can be represented as a directed graph in which nodes and edges denote operation entities and dependencies between entities, respectively. A knowledgeable attacker who plans to harm the system would aim to use the minimum amount of effort, cost, or resources to yield the maximum amount of damage. Their best strategy would be to attack the most critical nodes of the infrastructure. From the defender’s side, the strategy would be to minimize the potential damage by investing resources in bolstering the security of the critical nodes. Thus, in the struggle between the attacker and defender, it becomes important for both the attacker and defender to identify which nodes are most critically significant to the system. Identifying critical nodes is a complex optimization problem. In this paper, we first present the problem model and then propose a solution for computing the optimal cost attack while considering the failure propagation. The proposed model represents one or multiple interconnected infrastructures. While considering the attack cost of each node, the proposed method computes the optimal attack that a rational attacker would make. Our problem model simulates one of two goals: maximizing the damage for a given attack budget or minimizing the cost for a given amount of damage. Our technique obtains solutions to optimize the objective functions by utilizing integer-linear programming while observing the constraints for each of the specified goals. The paper reports an extensive set of experiments using various graphs. The results show the efficacy of our technique in terms of its ability to obtain solutions with fast turnaround times.

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Discover Internet of Things

DOI

https://doi.org/10.1007/s43926-023-00054-1

Share

COinS