Document Type

Conference Proceeding

Publication Date



It is a known fact that polymers and all other materials develop hysteresis heating due to the viscoelastic response or internal friction. The hysteresis or phase lag occurs when cyclic loading is applied leading to the dissipation of mechanical energy. The hysteresis heating is induced by the internal heat generation of the material, which occurs at the molecular level as it is being disturbed cyclically. Understanding the hysteresis heating of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the railroad bearing assembly. The main purpose of this ongoing study is to investigate the effect of the internal heat generation in the thermoplastic elastomer suspension element on the thermal behavior of the railroad bearing assembly. This paper presents an experimentally validated finite element thermal model that can be used to obtain temperature distribution maps of complete bearing assemblies in service conditions. The commercial software package ALGOR 20.3™ is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of determining the bearing suspension element and bearing assembly temperature distributions during normal and abnormal operation conditions. Preliminary results show that a combination of the ambient temperature, bearing temperature, and frequency of loading can produce elastomer pad temperature increases above ambient of up to 125°C when no thermal runway is present. The higher temperature increase occurs at higher loading frequencies such as 50 Hz, thus, allowing the internal heat generation to significantly impact the temperature distribution of the suspension pad. This paper provides several thermal maps depicting normal and abnormal operation conditions and discusses the overall thermal management of the railroad bearing assembly.


Copyright © 2018 by ASME. Original published version available at

Publication Title

Proceedings of the 2018 Joint Rail Conference





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.