Document Type


Publication Date



In metal-forming processes, the use of lubricants for providing desirable tribological conditions at the tool–workpiece interface is critical to increase the material formability and prolonging tool life. Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting the environment from contamination have renewed interest in developing environmentally-friendly lubricants derived from alternative sources such as vegetable oils. In the present study, the rheological and tribological behavior of coconut oil modified with nanoparticle additives was experimentally evaluated. Two different nanoparticle additives were investigated: Silicon dioxide (SiO2) and copper oxide (CuO). For the two conditions, nanoparticles were dispersed at different concentrations within the coconut oil. The effects of concentration and shear rate on the viscosity were evaluated and the experimental data was compared with conventional models. A custom-made tribotester was used to evaluate the effect of concentration on the tribological performance of the nano-lubricants. The experimental results showed that wear volume loss was lowered by 37% and 33% using SiO2 and CuO nanoparticles, respectively. Furthermore, the addition of SiO2 and CuO nanoparticles decreased the coefficient of friction (COF) by 93.75% and 93.25%, respectively, as compared to coconut oil without nanoparticles.


Original published version available at

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title






To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.