
Mechanical Engineering Faculty Publications and Presentations
Document Type
Article
Publication Date
2021
Abstract
Magnesium based niobium oxides (Mg–Nb–O) were prepared by solid-state reactions owing to understand the function of transition metal oxides as promoters/catalysts for practical application. Magnesium niobate (Mg3Nb6O11) was synthesized for the first time in nearly pure form reported in this context. MgNb2O6 and Mg4Nb2O9 were prepared in oxidizing conditions; on the contrary, Mg3Nb6O11 preferred reducing environment. Stoichiometric mixtures of the precursor materials MgO, Nb2O5 and/or metallic Nb were annealed for the syntheses which revealed the effect of temperature on phase formation, reaction kinetics and heat of reaction. The products were examined by ex-situ, in-situ X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Crystallographic parameters of various binary and ternary compounds (Mg/Nb/O) formed in different calcination conditions, were extracted by Rietveld method. In-situ experiment results in single step reaction for the MgNb2O6 synthesis and the heat of formation of the solid-state reaction obtained to be minimum (93 kJ/mol). In contrast, the formation of Mg4Nb2O9 and Mg3Nb6O11 compounds towards pure phases rather complicated due to multistep reactions and corresponding heat of formation were estimated to be 140 and 190 kJ/mol. Experimental results have been discussed based on kinetic and thermodynamic constrains.
Recommended Citation
Rahman, Md Wasikur. "Synthetic approach of ternary magnesium niobate (Mg–Nb–O) compounds." Scientific Reports 11, no. 1 (2021): 16065. https://doi.org/10.1038/s41598-021-95690-4
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Title
Scientific Reports
DOI
10.1038/s41598-021-95690-4
Comments
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.