Document Type

Article

Publication Date

11-20-2019

Abstract

Liquid range of nanofluids is a crucial parameter as it intensively determines their application temperature scope. Meanwhile, improved thermal conductivity and stability are of great significances and comprise the main fundamental research topics of nanofluids. In this work, 2-butoxy-3,4-dihydropyran (DP), produced from a convenient one-pot three-component reaction in water, was employed as dual lipophilic brusher and metal nanoparticle anchor. It was found that DP was able to enhance the dispersing ability and thermal conductivity of SiO2 nanoparticle filled deep eutectic solvent (DES) based nanofluids simultaneously. The key to the success of this protocol mainly relies on the electrophilic property and acetylacetonate moiety of DP, which ensures the formation of DP surficial modified and copper nanoparticle coated silica. Molecular dynamics simulation revealed that the hydrogen bonding effect between base solvent and alkane chain of nanoparticle was responsible for the enhanced affinity, which thus resulted in an improved stability. Viscosities of the nanofluids dropped within a certain range owing to the ruin of hydrogen bonding association among solvent molecules resulted by the hydrogen bonding effect between nanoparticle and solvent. Thermal conductivity of the copper modified silica filled DES nanofluids exhibits a maximum 13.6% enhancement, which demonstrated the advantages of this chemical covalent protocol. Additionally, study upon viscosity and convective heat transfer coefficient of the nanofluids with varies types of silica nanoparticle and DES base solvents indicated that a 24.9% heat transfer coefficient enhancement was gained that further revealed the superiority of this protocol.

Comments

Original published version available at https://doi.org/10.1021/acssuschemeng.9b06179

Publication Title

ACS Sustainable Chemistry and Engineering

DOI

10.1021/acssuschemeng.9b06179

Available for download on Thursday, November 26, 2020

Share

COinS