Document Type


Publication Date



As one of the three-dimensional (3D) bioprinting techniques with great application potential, laser-induced-forward-transfer (LIFT) based laser assisted bioprinting (LAB) transfers the bioink through a developed jet flow, and the printing quality highly depends on the stability of jet flow regime. To understand the connection between the jet flow and printing outcomes, a Computational Fluid Dynamic (CFD) model was developed for the first time to accurately describe the jet flow regime and provide a guidance for optimal printing process planning. By adopting the printing parameters recommended by the CFD model, the printing quality was greatly improved by forming stable jet regime and organized printing patterns on the substrate, and the size of printed droplet can also be accurately predicted through a static equilibrium model. The ultimate goal of this research is to direct the LIFT-based LAB process and eventually improve the quality of bioprinting.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.