Document Type

Conference Proceeding

Publication Date



The aim of this research is to study droplet spray characteristics of an atomization-based cutting fluid (ACF) spray system including droplet entrainment angle and flow development regions with respect to three ACF spray parameters, viz., droplet and gas velocities, and spray distance. ACF spray experiments are performed by varying droplet and gas velocities. The flow development behavior is studied by modeling the droplets entrainment mechanism, and the density and distribution of the droplets across the jet flare. Machining experiments are also performed in order to understand the effect of the droplet spray behavior on the machining performances, viz., tool life/wear, and surface roughness during turning of a titanium alloy, Ti-6Al-4V. Experiments and the modeling of flow development behavior reveal that a higher droplet velocity and a smaller gas velocity result in smaller droplet entrainment angle leading to a gradual and early development of the co-flow with a smaller density and a better distribution of the droplet across the jet flare. Machining experiments also show that a higher droplet velocity, a lower gas velocity and a longer spray distance significantly improve the machining performances such as tool life and wear, and surface finish.


© 2012 by ASME. Original published version available at

Publication Title

Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.