Document Type

Article

Publication Date

2020

Abstract

The quantization scheme in probability theory deals with finding a best approximation of a given probability distribution by a probability distribution that is supported on finitely many points. For a given k ≥ 2, let {Sj : 1 ≤ j ≤ k} be a set of k contractive similarity mappings such that Sj(x) = 1 2k−1x + 2(j−1) 2k−1 for all x ∈ R, and let P = 1 k Pk j=1 P ◦ S−1 j . Then, P is a unique Borel probability measure on R such that P has support the Cantor set generated by the similarity mappings Sj for 1 ≤ j ≤ k. In this paper, for the probability measure P, when k = 3, we investigate the optimal sets of n-means and the nth quantization errors for all n ≥ 2. We further show that the quantization coefficient does not exist though the quantization dimension exists

First Page

389

Last Page

407

Publication Title

HOUSTON JOURNAL OF MATHEMATICS

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.