School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



The main goal of the paper is to contribute to the agenda of developing an algorithmic model for crystallization and measuring the complexity of crystals by constructing embeddings of 3D parallelohedra into a primitive cubic network (pcu net). It is proved that any parallelohedron P as well as tiling by P, except the rhombic dodecahedron, can be embedded into the 3D pcu net. It is proved that for the rhombic dodecahedron embedding into the 3D pcu net does not exist; however, embedding into the 4D pcu net exists. The question of how many ways the embedding of a parallelohedron can be constructed is answered. For each parallelohedron, the deterministic finite automaton is developed which models the growth of the crystalline structure with the same combinatorial type as the given parallelohedron.


Copyright 2020 International Union of Crystallography

First Page


Last Page


Publication Title

Acta Crystallographica Section A: Foundations and Advances



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.