Document Type

Article

Publication Date

2007

Abstract

In this paper we prove that Ramanujan's differential equations for the Eisenstein series P, Q, and R are invariant under a simple one-parameter stretching group of transformations. Using this, we show that the three differential equations may be reduced to a first order Riccati differential equation, the solution of which may be represented in terms of hypergeometric functions. The resulting formulas allow for the derivation of parametric representations of P, Q, and R, analogous to representations in Ramanujan's second notebook. In contrast, in the classical approach, one first needs to derive the fundamental formula connecting theta functions with elliptic integrals. This theorem is not needed in the present approach.

Comments

Copyright Instytut Matematyczny PAN, 2007

Publication Title

Acta Arithmetica

DOI

10.4064/aa128-3-6

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.