Document Type

Conference Proceeding

Publication Date

4-12-2021

Abstract

Synthetic aperture radar (SAR) echo simulation offers a low-cost and convenient way to obtain high-resolution images of targets, and plays an important role in system design and algorithm validation. Although high frequency approximation simulation is widely used, it is considered to be imprecise when calculating scattering field of fine structures, such as exhaust pipes and groove structures, especially in low frequency band. In this paper, a finite-difference time-domain (FDTD) based method is proposed for high-precision SAR echo simulation. In this method, scattering process of electromagnetic wave is accurately simulated to obtain equivalent electric and magnetic current on the surface of the target. Also, a near-to-far-field transformation is applied to the equivalent electric and magnetic current to calculate the field at the receiving antenna. In this transformation, a waveform forming method is introduced to simulate stripmap SAR echoes. By introducing this method, the usage of FDTD in one single simulation can be greatly reduced. The experiments show that proposed method can significantly improve the efficiency of the simulation while maintaining echo accuracy.

Comments

Copyright 2021. Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.

Publication Title

Proc. SPIE 11742, Radar Sensor Technology XXV

DOI

10.1117/12.2587380

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.