School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



Solutions of a mathematical model for gas solubility in a liquid are attained employing an algorithm based on the generalized Galerkin B-poly basis technique. The algorithm determines a solution of a fractional differential equation in terms of continuous finite number of generalized fractional-order Bhatti polynomial (B-poly) in a closed interval. The procedure uses Galerkin method to calculate the unknown expansion coefficients for constructing a solution to the fractional-order differential equation. Caputo?s fractional derivative is employed to evaluate the derivatives of the fractional B-polys and each term in the differential equation is converted into a matrix problem which is then inverted to construct the solution. The accuracy and efficiency of the B-poly algorithm rely on the size of the basis set as well as the degree of the B-polys used. The fractional-order B-Poly technique has been applied to the mathematical model for a gas diffusion in a liquid with gas volume functions f(t) = 1 − t1/2 and f(t) = 1 − t3/2. The solutions of the model were obtained which converged with a small number of B-polys basis set. In case of the power series solution, the solution did not converge due to alternating terms present in the solution. We used a Pade approximant on the power series solutions to extract the useful information which showed the solutions are convergent and those solutions were compared with the solutions obtained from the B-poly approach. Excellent agreement was found between the solutions. A Pade approximant was not used on the B-poly solutions because those were convergent with a smaller number of B-polys.


© 2018 The Author(s). Published by IOP Publishing Ltd

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Publication Title

Journal of Physics Communications



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.