School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



A loop is a rather general algebraic structure that has an identity element and division, but is not necessarily associative. Smooth loops are a direct generalization of Lie groups. A key example of a non-Lie smooth loop is the loop of unit octonions. In this paper, we study properties of smooth loops and their associated tangent algebras, including a loop analog of the Maurer-Cartan equation. Then, given a manifold, we introduce a loop bundle as an associated bundle to a particular principal bundle. Given a connection on the principal bundle, we define the torsion of a loop bundle structure and show how it relates to the curvature, and also develop aspects of a non-associative gauge theory. Throughout, we see how some of the known properties of -structures can be seen from this more general setting.

Publication Title

Advances in Mathematics



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.