School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



The paper is devoted to coverings by translative homothets and illuminations of convex bodies. For a given positive number α and a convex body B, gα⁡(B) is the infimum of α-powers of finitely many homothety coefficients less than 1 such that there is a covering of B by translative homothets with these coefficients. hα⁡(B) is the minimal number of directions such that the boundary of B can be illuminated by this number of directions except for a subset whose Hausdorff dimension is less than α. In this paper, we prove that gα⁡(B)≤hα⁡(B), find upper and lower bounds for both numbers, and discuss several general conjectures. In particular, we show that hα⁡(B)>2d−α for almost all α and d when B is the d-dimensional cube, thus disproving the conjecture from Brass, Moser, and Pach [Research problems in discrete geometry, Springer, New York, 2005].


First published in Proc. Amer. Math. Soc. 150 (2022), 779-793, published by the American Mathematical Society. © 2021 American Mathematical Society.

Publication Title

Proceedings of the American Mathematical Society



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.