School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



The Darboux transformation (DT) for the coupled complex short pulse (CCSP) equation is constructed through the loop group method. The DT is then utilized to construct various exact solutions including bright soliton, dark-soliton, breather and rogue wave solutions to the CCSP equation. In case of vanishing boundary condition (VBC), we perform the inverse scattering analysis to understand the soliton solution better. Breather and rogue wave solutions are constructed in case of non-vanishing boundary condition (NVBC). Moreover, we conduct a modulational instability (MI) analysis based on the method of squared eigenfunctions, whose result confirms the condition for the existence of rogue wave solution.


Original published version available at

Publication Title

Physica D: Nonlinear Phenomena



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.