School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



We investigate three-dimensional nonlinear rotating viscoelastic curved jets in the presence of gravity force. Applying the Giesekus model for the viscoelastic stress parts of the jet flow system and using perturbation methods with a consistent scaling, a relatively simple system of equations with realistic three-dimensional centerlines is developed. We determine numerically the relevant solution quantities of the model in terms of the radius, speed, tensile force, stretching rate, strain rate and the jet centerline versus arc length and for different parameter values associated with gravity, viscosity, rotation, surface tension and viscoelasticity. Considering the jet flow system in full 3-dimensions and in the presence of gravity can be significant, impacting the jet speed, strain rate, tensile force, stretching rate and the centerline curvature are notably increased in magnitude and the jet radius size is reduced and this becomes more dominant with larger values of the arc length, gravity, rotation and viscoelasticity. In particular, for a typical value of the gravity and for an order one value of the arc length, we found that gravity makes jet speed higher by at least a factor of 2 and makes jet radius lower by a factor of 0.6 or smaller as we compare to the corresponding values when gravity is not considered.

Publication Title

Partial Differential Equations in Applied Mathematics



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.