Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-6-2022

Abstract

We present a new non-Archimedean realization of the Fock representation of the q-oscillator algebras where the creation and annihilation operators act on complex-valued functions, which are defined on a non-Archimedean local field of arbitrary characteristic, for instance, the field of p-adic numbers. This new realization implies that a large number of quantum models constructed using q-oscillator algebras are non-Archimedean models, in particular, p-adic quantum models. In this framework, we select a q-deformation of the Heisenberg uncertainty relation, and construct the corresponding q-deformed Schrödinger equations. In this way we construct a p-adic quantum mechanics which is a p-deformed quantum mechanics. We also solve the time-independent Schrödinger equations for the free particle, and a particle in a non-Archimedean box. In the last case we show the existence of a discrete sequence of energy levels. We determine the eigenvalues of Schrödinger operator for a general radial potential. By choosing the potential in a suitable form we recover the energy levels of the q-hydrogen atom.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.