School of Mathematical and Statistical Sciences Faculty Publications and Presentations

On quintic Eisenstein series and points of order five of the Weierstrass elliptic functions

Document Type

Article

Publication Date

4-27-2012

Abstract

We employ a new constructive approach to study modular forms of level five by evaluating the Weierstrass elliptic functions at points of order five on the period parallelogram. A significant tool in our analysis is a nonlinear system of coupled differential equations analogous to Ramanujan’s differential system for the Eisenstein series on SL(2,ℤ). The resulting relations of level five may be written as a coupled system of differential equations for quintic Eisenstein series. Some interesting combinatorial and analytic consequences result, including an alternative proof of a famous identity of Ramanujan involving the Rogers–Ramanujan continued fraction.

Comments

Copyright © 2012, Springer Science Business Media, LLC

https://rdcu.be/c56mT

Publication Title

Ramanujan J

DOI

10.1007/s11139-011-9368-0

Share

COinS