School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



We consider a nonlinear three-dimensional viscoelastic fiber jet that is generated during a forcespinning process. We provide a particular case for such a rotating jet at a high rotation rate. We use a viscoelastic constitutive model for the jet equations and then applying a new slender body approach, we continue with proper scaling and perturbation technique to develop a new model for such a jet system. We find that the profiles for jet quantities versus arc length are notably different from all those in related studies reported before for either high or low rotation rates. In particular, jet radius first rapidly decreases as the arc length decreases and then reaches its macro- or nano-scale size not far away from its exit section. The present model can predict a nano-fiber jet that is entirely based on proper scaling, perturbation technique and full fluid mechanics laws and equations.

Creative Commons License

Creative Commons Attribution-Noncommercial 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License


Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.