School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence. The mathematical framework underlying our analysis is the infinite system of balance equations that govern the generalized unfused structure functions, first introduced by L’vov and Procaccia. As a point of departure we use a revised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence. We show that both the enstrophy cascade and the inverse energy cascade are local in the sense of nonperturbative statistical locality. We also investigate the stability conditions for both cascades. We have shown that statistical stability with respect to forcing applies unconditionally for the inverse energy cascade. For the enstrophy cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dissipation. A careful discussion of the subtle notion of locality is given at the end of the paper.


© 2008 American Physical Society. Original published version available at

Publication Title

Physical Review E



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.