School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

10-12-2023

Abstract

Some individuals complain of listening-in-noise difficulty despite having a normal audiogram. In this study, machine learning is applied to examine the extent to which hearing thresholds can predict speech-in-noise recognition among normal-hearing individuals. The specific goals were to (1) compare the performance of one standard (GAM, generalized additive model) and four machine learning models (ANN, artificial neural network; DNN, deep neural network; RF, random forest; XGBoost; eXtreme gradient boosting), and (2) examine the relative contribution of individual audiometric frequencies and demographic variables in predicting speech-in-noise recognition. Archival data included thresholds (0.25–16 kHz) and speech recognition thresholds (SRTs) from listeners with clinically normal audiograms (n = 764 participants or 1528 ears; age, 4–38 years old). Among the machine learning models, XGBoost performed significantly better than other methods (mean absolute error; MAE = 1.62 dB). ANN and RF yielded similar performances (MAE = 1.68 and 1.67 dB, respectively), whereas, surprisingly, DNN showed relatively poorer performance (MAE = 1.94 dB). The MAE for GAM was 1.61 dB. SHapley Additive exPlanations revealed that age, thresholds at 16 kHz, 12.5 kHz, etc., on the order of importance, contributed to SRT. These results suggest the importance of hearing in the extended high frequencies for predicting speech-in-noise recognition in listeners with normal audiograms.

Comments

© 2023 Acoustical Society of America. Original published version available at https://doi.org/10.1121/10.0021303

Publication Title

The Journal of the Acoustical Society of America

DOI

10.1121/10.0021303

Available for download on Friday, April 12, 2024

Share

COinS