School of Mathematical and Statistical Sciences Faculty Publications and Presentations

KP reductions and various soliton solutions to the Fokas–Lenells equation under nonzero boundary condition

Document Type

Article

Publication Date

11-2023

Abstract

In this paper, we clarify the connection of the Fokas–Lenells (FL) equation to the Kadomtsev–Petviashvili (KP)–Toda hierarchy by using a set of bilinear equations as a bridge and confirm multidark soliton solution to the FL equation previously given by Matsuno (J. Phys. A 2012 45 (475202). We also show that the set of bilinear equations in the KP–Toda hierarchy can be generated from a single discrete KP equation via Miwa transformation. Based on this finding, we further deduce the multibreather and general rogue wave solutions to the FL equation. The dynamical behaviors and patterns for both the breather and rogue wave solutions are illustrated and analyzed.

Comments

© 2023 Wiley Periodicals LLC.

https://onlinelibrary.wiley.com/share/TNH4NMRFXQDPAPPTWUKC?target=10.1111/sapm.12654

Publication Title

Stud Appl Math

DOI

10.1111/sapm.12654

Share

COinS