School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



Let (R,\mathfrak m,\Bbbk ) be a regular local ring of dimension 3. Let I be a Gorenstein ideal of R of grade 3. Buchsbaum and Eisenbud proved that there is a skew-symmetric matrix of odd size such that I is generated by the sub-maximal pfaffians of this matrix. Let J be the ideal obtained by multiplying some of the pfaffian generators of I by \mathfrak m; we say that J is a trimming of I. Building on a recent paper of Vandebogert, we construct an explicit free resolution of R/J and compute a partial DG algebra structure on this resolution. We provide the full DG algebra structure in the appendix. We use the products on this resolution to study the Tor algebra of such trimmed ideals and we use the information obtained to prove that recent conjectures of Christensen, Veliche and Weyman on ideals of class \textbf{G} hold true in our context. Furthermore, we address the realizability question for ideals of class \textbf{G}.


Original published version available at

Publication Title

Acta Math Vietnam



Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.