School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



In this work, a new relationship is established between the solutions of higher fractional differential equations and a Wright-type transformation. Solutions could be interpreted as expected values of functions in a random time process. As applications, we solve the fractional beam equation, fractional electric circuits with special functions as external sources, and derive d’Alembert’s formula for the fractional wave equation. Due to this relationship, we present two methods for simulating solutions of fractional differential equations. The two approaches use the interpretation of the Caputo derivative of a function as a Wright-type transformation of the higher derivative of the function. In the first approach, we use the Runge-Kutta method of hybrid orders 4 and 5 to solve ordinary differential equations combined with the Monte Carlo integration to conduct the Wright-type transformation. The second method uses a feedforward neural network to simulate the fractional differential equation.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.