Document Type

Article

Publication Date

3-1996

Abstract

Pade approximants are able to sum effectively the Rayleigh-Schrodinger perturbation series for the ground state energy of the quartic anharmonic oscillator, as well as the corresponding renormalized perturbation expansion [E.J. Weniger, J. Cizek, and F. Vinette, J. Math. Phys. 34, 571 (1993)]. In the sextic case, Pade approximants are still able to sum these perturbation series, but convergence is so slow that they are computationally useless. In the octic case, Pade approximants are not powerful enough and fail. On the other hand, the inclusion of only a few additional data from the strong coupling domain [E.J. Weniger, Ann. Phys. (N.Y.) (to be published)] greatly enhances the power of summation methods. The summation techniques that we consider are two-point Pade approximants and effective characteristic polynomials. It is shown that these summation methods give good results for the quartic and sextic anharmonic oscillators, and even in the case of the octic anharmonic oscillator, which represents an extremely challenging summation problem, two-point Pade approximants give relatively good results.

Comments

© 1996 The American Physical Society. Original published version available at https://doi.org/10.1103/PhysRevE.53.2925

Publication Title

Physical Review E

DOI

10.1103/PhysRevE.53.2925

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.