School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Document Type


Publication Date



In the present paper, an integrable semi-discretization of the modified Camassa-Holm (mCH) equation with cubic nonlinearity is presented. The key points of the construction are based on the discrete Kadomtsev-Petviashvili (KP) equation and appropriate definition of discrete reciprocal transformations. First, we demonstrate that these bilinear equations and their determinant solutions can be derived from the discrete KP equation through Miwa transformation and some reductions. Then, by scrutinizing the reduction process, we obtain a set of semi-discrete bilinear equations and their general soliton solutions in the Gram-type determinant form. Finally, we obtain an integrable semi-discrete analog of the mCH equation by introducing dependent variables and discrete reciprocal transformation. It is also shown that the semi-discrete mCH equation converges to the continuous one in the continuum limit.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.