Document Type

Article

Publication Date

2020

Abstract

We study Cohen-Macaulay Hopf monoids in the category of species. The goal is to apply techniques from topological combinatorics to the study of polynomial invariants arising from combinatorial Hopf algebras. Given a polynomial invariant arising from a linearized Hopf monoid, we show that under certain conditions it is the Hilbert polynomial of a relative simplicial complex. If the Hopf monoid is Cohen- Macaulay, we give necessary and sufficient conditions for the corresponding relative simplicial complex to be relatively Cohen-Macaulay, which implies that the polynomial has a nonnegative h-vector. We apply our results to the weak and strong chromatic polynomials of acyclic mixed graphs, and the order polynomial of a double poset.

Publication Title

Séminaire Lotharingien de Combinatoire

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.