Document Type

Article

Publication Date

9-14-2020

Abstract

Given a bounded sequence \omega of positive numbers and its associated unilateral weighted shift W_{\omega} acting on the Hilbert space \ell^2(\mathbb{Z}_+), we consider natural representations of W_{\omega} as a 2-variable weighted shift, acting on \ell^2(\mathbb{Z}_+^2). Alternatively, we seek to examine the various ways in which the sequence \omega can give rise to a 2-variable weight diagram. Our best (and more general) embedding arises from looking at two polynomials p and q nonnegative on a closed interval I in R_+ and the double-indexed moment sequence \{\int p(r)^k q(r)^{\ell} d\sigma(r)\}_{k,\ell \in \mathbb{Z}_+}, where W_{\omega} is assumed to be subnormal with Berger measure \sigma such that \supp \; \sigma \subseteq I; we call such an embedding a (p,q)-embedding of W_{\omega}. We prove that every (p,q)-embedding of a subnormal weighted shift W_{\omega} is (jointly) subnormal, and we explicitly compute its Berger measure. We apply this result to answer three outstanding questions: (i) Can the Bergman shift A_2 be embedded in a subnormal 2-variable spherically isometric weighted shift W_{(\alpha,\beta)}? If so, what is the Berger measure of W_{(\alpha,\beta)}? (ii) Can a contractive subnormal unilateral weighted shift be always embedded in a spherically isometric 2-variable weighted shift? (iii) Does there exist a hyponormal 2-variable weighted shift \Theta(W_{\omega}) (where \Theta(W_{\omega}) denotes the classical embedding of a hyponormal unilateral weighted shift W_{\omega}) such that some integer power of \Theta(W_{\omega}) is not hyponormal? As another application, we find an alternative way to compute the Berger measure of the Agler j-th shift A_{j} (j\geq 2). Our research uses techniques from the theory of disintegration of measures, Riesz functionals, and the functional calculus for the columns of the moment matrix associated to a polynomial embedding.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.