Document Type


Publication Date



The topological state of covalently closed, double-stranded DNA is defined by the knot type $K$ and the linking-number difference $\\Delta Lk$ relative to unknotted relaxed DNA. DNA topoisomerases are essential enzymes that control the topology of DNA in all cells. In particular, type-II topoisomerases change both $K$ and $\\Delta Lk$ by a duplex-strand-passage mechanism and have been shown to simplify the topology of DNA to levels below thermal equilibrium at the expense of ATP hydrolysis. It remains a key question how small enzymes are able to preferentially select strand passages that result in topology simplification in much larger DNA molecules. Using numerical simulations, we consider the non-equilibrium dynamics of transitions between topological states $(K,\\Delta Lk)$ in DNA induced by type-II topoisomerases. For a biological process that delivers DNA molecules in a given topological state $(K,\\Delta Lk)$ at a constant rate we fully characterize the pathways of topology simplification by type-II topoisomerases in terms of stationary probability distributions and probability currents on the network of topological states $(K,\\Delta Lk)$. In particular, we observe that type-II topoisomerase activity is significantly enhanced in DNA molecules that maintain a supercoiled state with constant torsional tension. This is relevant for bacterial cells in which torsional tension is maintained by enzyme-dependent homeostatic mechanisms such as DNA-gyrase activity.


© 2019, Oxford University Press. Original published version available at

First Page


Last Page


Publication Title

Oxford University Press





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.