Document Type


Publication Date



This paper describes recent results using our approach to calculating self-consistently single (SS) and multiple-scattering (MS) Debye- Waller factors (DWF) on active sites of metalloproteins. The calculation of MS DWF, together with the Feff7 program allows us to simulate ab-initio EXAFS spectra for a given temperature systems with no adjustable parameters. In our latest report (Dimakis N., and Bunker G., 1998) we calculate, using density functional and semiempirical approaches, the SS and MS DWF for small molecules and compared them to Raman, infrared and EXAFS spectra. In this report calculation of DWFs is done for tetrahedral Zn imidazole, a complex containing thirty two atoms that is similar in certain respects to active sites of many metalloproteins. Ab-initio calculation, although it is a more accurate and reliable scheme, it is not at present practical on desktop computers; computation times are weeks. Therefore as an alternative we have tried the semiempirical MNDO Hamiltonian, which is at least three orders of magnitude faster than ab-initio, and can be expected to be of reasonable accuracy because it is parameterized for organic compounds. Our approaches take advantage of commercially available molecular orbital programs. We have written additional programs which, using normal mode calculations, calculate the MS paths, and transparently interface with Fef-f'/to produce the EXAFS spectra. Results are in very good agreement with experimental data tested.


© 1999 International Union of Crystallography. Original published version available at

First Page


Last Page


Publication Title

Journal of Synchrotron Radiation





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.