Document Type

Article

Publication Date

6-2021

Abstract

The motion of a mechanical object— even a human-sized object— should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult: the thermal environment effectively masks any quantum signature of the object’s motion. Indeed, it also masks effects of proposed modifications of quantum mechanics at large mass scales. We prepare the center-of-mass motion of a 10 kg mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in oscillator temperature, from room temperature to 77 nK, represents a 100-fold improvement in the reduction of temperature of a solid-state mechanical oscillator— commensurate with a 11 orders-of-magnitude suppression of quantum back-action by feedback — and a 10 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state.

Comments

Original published version available at https://doi.org/10.1126/science.abh2634

Publication Title

Science

DOI

10.1126/science.abh2634

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.