Document Type

Article

Publication Date

12-7-2021

Abstract

High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some highpower cavity experiments, for example, the Advanced LIGO gravitational wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in-situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational wave detectors that support high optical power, and thus reduce quantum noise.

Comments

© 2021 American Physical Society

Publication Title

Physical Review Letters

DOI

10.1103/PhysRevLett.127.241102

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.