Document Type

Article

Publication Date

3-13-2022

Abstract

The data presented in this paper refer to the research article "Dry and Hydrated Defective Molybdenum Disulfide/Graphene Bilayer Heterojunction Under Strain for Hydrogen Evolution from Water Splitting: A First-principle Study". Here, we present the Density Functional Theory (DFT) data used to generate optimal geometries and electronic structure for the MoS2/graphene heterostructure under strain, for dry and hydrated pristine and defect configurations. We also report DFT data used to obtain hydrogen Gibbs free energies for adsorption on the MoS2 monolayer and on graphene of the heterostructure. The DFT data were calculated using the periodic DFT code CRYSTAL17, which employs Gaussian basis functions, under the hybrid functionals PBE0 and HSE06. Moreover, we also report the data used for Quantum Theory of Atoms in Molecules (QTAIM) and Non-covalent Interaction (NCI) analysis calculations. These data were obtained using the optimized unit cell configurations from the periodic DFT and inputted to Gamess program, thus generating files that could be read by the Multiwfn program used for QTAIM and NCI calculations.

Comments

© 2022 The Author(s). Published by Elsevier Inc.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Data in Brief

DOI

10.1016/j.dib.2022.108054

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.