Document Type

Article

Publication Date

6-2022

Abstract

Extracting gravitational wave (GW) signals from individual Galactic binaries (GBs) against their self-generated confusion noise is a key data analysis challenge for space-borne detectors operating in the ≈0.1 mHz to ≈10 mHz range. Given the likely prospect that there will be multiple such detectors, namely LISA, Taiji, and Tianqin, with overlapping operational periods in the next decade, it is important to examine the extent to which the joint analysis of their data can benefit GB resolution and parameter estimation. To investigate this, we use realistic simulated LISA and Taiji data containing the set of 30×106 GBs used in the first LISA data challenge (Radler), and an iterative source extraction method called GBSIEVER introduced in an earlier work. We find that a coherent network analysis of LISA-Taiji data boosts the number of confirmed sources by ≈75% over that from a single detector. The residual after subtracting out the reported sources from the data of any one of the detectors is much closer to the confusion noise expected from an ideal, but infeasible, multisource resolution method that perfectly removes all sources above a given signal-to-noise ratio threshold. While parameter estimation for sources common to both the single detector and network improves broadly in line with the enhanced signal to noise ratio of GW sources in the latter, deviation from the scaling of error variance predicted by Fisher information analysis is observed for a subset of the parameters.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.