Document Type

Article

Publication Date

8-5-2022

Abstract

We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2  M⊙ and 1.0  M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q≥0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14  yr−1. This implies an upper limit on the merger rate of subsolar binaries in the range [220−24200]  Gpc−3 yr−1, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2  M⊙

Comments

© 2022 American Physical Society. Original published version available at https://doi.org/10.1103/PhysRevLett.129.061104

Publication Title

Physical Review Letters

DOI

10.1103/PhysRevLett.129.061104

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.