Document Type

Article

Publication Date

9-12-2022

Abstract

Resonant optical cavities are essential components in mid-infrared applications. However, typical film-type cavities require multilayer stacks with a micronthick spacer due to mid-infrared wavelengths, and their performance is limited by narrow frequency tunability and angular sensitivity. We propose and experimentally demonstrate the subwavelength-scale (≈𝜆0/150) resonant nanocavity arrays that enhance the absorption spectrum of the device in the mid-infrared (10–12 microns) via excitation of coupled surface plasmon–phonon polaritons. The proposed metal–insulator–polar dielectric (gold–silicon–silicon carbide) structure supports a guided mode of the coupled surface polaritons in the lateral direction while vertically confining the mid-infrared wave

Comments

© 2022 the author(s), published by De Gruyter.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Nanophotonics

DOI

10.1515/nanoph-2022-0339

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.