Document Type


Publication Date



The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.


Original published version available at

Publication Title

Biochemical Society transactions





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.