Document Type


Publication Date



Metal-insulator-metal metasurfaces have been widely used as high-performance absorbers in almost all electromagnetic spectral ranges. Their absorption spectra can be engineered by making variations in the geometry of the unit cells and/or by embedding materials with specific optical constants. Including a polar dielectric in their structure is another approach for manipulating their absorption spectra. In this research, we have numerically and experimentally investigated the effect of using silicon dioxide (SiO2) as a polar dielectric on the absorption spectrum of a metal-insulator-metal metasurface composed of a tri-layer of Ni-SiO2-Ni. Our results have shown the presence of absorption peaks in the mid-infrared which are attributed to the excitation of the optical phonons in the SiO2 spacer layer. Particularly, the excitation of the Berreman mode in the SiO2 spacer layer was observed and its effect on the total absorption spectrum is studied. The parametric effects of the top patterned Ni layer, the incident angle, and the polarization are also investigated. This study can provide engineering capabilities for the mid-infrared absorbers and reflection filters.


© 2023 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Materials Research Express





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.