Glitch subtraction from gravitational wave data using adaptive spline fitting

Soumya Mohanty, The University of Texas Rio Grande Valley
Mohammad A. T. Chowdhury, The University of Texas Rio Grande Valley


Transient signals of instrumental and environmental origins ("glitches") in gravitational wave data elevate the false alarm rate of searches for astrophysical signals and reduce their sensitivity. Glitches that directly overlap astrophysical signals hinder their detection and worsen parameter estimation errors. As the fraction of data occupied by detectable astrophysical signals will be higher in next generation detectors, such problematic overlaps could become more frequent. These adverse effects of glitches can be mitigated by estimating and subtracting them out from the data, but their unpredictable waveforms and large morphological diversity pose a challenge. Subtraction of glitches using data from auxiliary sensors as predictors works but not for the majority of cases. Thus, there is a need for nonparametric glitch mitigation methods that do not require auxiliary data, work for a large variety of glitches, and have minimal effect on astrophysical signals in the case of overlaps. In order to cope with the high rate of glitches, it is also desirable that such methods be computationally fast. We show that adaptive spline fitting, in which the placement of free knots is optimized to estimate both smooth and non-smooth curves in noisy data, offers a promising approach to satisfying these requirements for broadband short-duration glitches, the type that appear quite frequently. The method is demonstrated on glitches drawn from three distinct classes in the Gravity Spy database as well as on the glitch that overlapped the double neutron star signal GW170817. The impact of glitch subtraction on the GW170817 signal, or those like it injected into the data, is seen to be negligible.