Document Type

Article

Publication Date

3-2024

Abstract

We present the discoveries of two of AM CVn systems, Gaia14aae and SDSS J080449.49+161624.8, which show X-ray pulsations at their orbital periods, indicative of magnetically collimated accretion. Both also show indications of higher rates of mass transfer relative to the expectations from binary evolution driven purely by gravitational radiation, based on existing optical data for Gaia14aae, which show a hotter white dwarf temperature than expected from standard evolutionary models, and X-ray data for SDSS J080449.49+161624.8 which show a luminosity 10−100 times higher than those for other AM CVn at similar orbital periods. The higher mass transfer rates could be driven by magnetic braking from the disc wind interacting with the magnetosphere of the tidally locked accretor. We discuss implications of this additional angular momentum transport mechanism for evolution and gravitational wave detectability of AM CVn objects.

Comments

© The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Monthly Notices of the Royal Astronomical Society

DOI

10.1093/mnrasl/slad194

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.