Psychological Science Faculty Publications and Presentations

Document Type


Publication Date



Autism is a complex neurodevelopmental disorder characterized by impairment of social interaction, language, communication, and stereotyped, repetitive behavior. Genetic predisposition to Autism has been demonstrated in families and twin studies. There is evidence (linkage and genetic association, biochemical, neuropathological, functional and cytogenetic) that the gamma-amino-butyric acid receptor beta 3 subunit gene (GABRB3) at 15q11-q13 is a susceptibility candidate gene for Autism. The aim of this exploratory study was to identify new variants of this gene. We performed the molecular analysis (SSCP/Sequencing) of 10 exons and its intronic flanking regions of GABRB3, using a candidate gene screening approach in 18 idiopathic autistic patients. We did not find non-synonymous mutations at the encoding regions, but we identified four SNP (Single Nucleotide Polymorphism). The first one, represented a silent mutation p.P25P in exon la and was found in 33.33% of the patients. The second one: IVS3 + 13C > T (5b far from the intron 5' consensus sequence), was found in 44.44% of the patients, while it was also identified in 16.67% of the controls. Simultaneously, 33.33% of the patients had both variants, and although, 16.67% of the controls also had the same combination of variants, 66.66% of the patients with those alleles had a familiar history of Autism. The third and fourth SNP: IVS5 + 40T > G and IVS-70A > G were identified in two different patients. None of the last three SNPs have been reported at the SNP database (dbSNP). The proximity of SNP: IVS3 + 13C > T with the consensus and interaction sequence with U1 nucleoriboprotein, could disturb the normal splicing of mRNA. This is in agreement with the evidence of lower levels of GABA-A receptors in autistic brains; so, it could be a common variant, that by itself could not cause a phenotypic effect, but joined to other variants with the same gene, in different related genes or with epigenetic changes, could explain the autistic phenotype and its heterogeneity.

Publication Title

Investigación Clínica

Included in

Psychology Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.