Document Type

Article

Publication Date

12-2015

Abstract

Type 2 diabetes (T2D) is a common,multifactorial disease that is influenced by genetic and environmental factors and their interactions. However, common variants identified by genome wide association studies (GWAS) explain only about 10% of the total trait variance for T2D and less than 5% of the variance for obesity, indicating that a large proportion of heritability is still unexplained. The transcriptomic approach described here uses quantitative gene expression and disease-related physiological data (deep phenotyping) to measure the direct correlation between the expression of specific genes and physiological traits. Transcriptomic analysis bridges the gulf between GWAS and physiological studies. Recent GWAS studies have utilized very large population samples, numbering in the tens of thousands (or even hundreds of thousands) of individuals, yet establishing causal functional relationships between strongly associated genetic variants and disease remains elusive. In light of the findings described below, it is appropriate to consider how and why transcriptomic approaches in small samples might be capable of identifying complex disease-related genes which are not apparent using GWAS in large samples.

Comments

© 2015 Published by Elsevier Inc.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Title

Genomics Data

DOI

10.1016/j.gdata.2015.12.001

Academic Level

faculty

Mentor/PI Department

Office of Human Genetics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.