School of Medicine Publications and Presentations

Document Type


Publication Date



Imaging genetics analyses use neuroimaging traits as intermediate phenotypes to infer the degree of genetic contribution to brain structure and function in health and/or illness. Coefficients of relatedness (CR) summarize the degree of genetic similarity among subjects and are used to estimate the heritability – the proportion of phenotypic variance explained by genetic factors. The CR can be inferred directly from genome-wide genotype data to explain the degree of shared variation in common genetic polymorphisms (SNP-heritability) among related or unrelated subjects. We developed a central processing and graphics processing unit (CPU and GPU) accelerated Fast and Powerful Heritability Inference (FPHI) approach that linearizes likelihood calculations to overcome the ∼N2–3 computational effort dependency on sample size of classical likelihood approaches. We calculated for 60 regional and 1.3 × 105 voxel-wise traits in N = 1,206 twin and sibling participants from the Human Connectome Project (HCP) (550 M/656 F, age = 28.8 ± 3.7 years) and N = 37,432 (17,531 M/19,901 F; age = 63.7 ± 7.5 years) participants from the UK Biobank (UKBB). The FPHI estimates were in excellent agreement with heritability values calculated using Genome-wide Complex Trait Analysis software (r = 0.96 and 0.98 in HCP and UKBB sample) while significantly reducing computational (102–4 times). The regional and voxel-wise traits heritability estimates for the HCP and UKBB were likewise in excellent agreement (r = 0.63–0.76, p < 10−10). In summary, the hardware-accelerated FPHI made it practical to calculate heritability values for voxel-wise neuroimaging traits, even in very large samples such as the UKBB. The patterns of additive genetic variance in neuroimaging traits measured in a large sample of related and unrelated individuals showed excellent agreement regardless of the estimation method. The code and instruction to execute these analyses are available at


© 2021 The Authors. Published by Elsevier Inc.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title




Academic Level


Mentor/PI Department

Office of Human Genetics



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.