School of Medicine Publications and Presentations

Document Type


Publication Date



Besides providing an essential protective barrier, airway epithelial cells directly sense pathogens and respond defensively. This is a frontline component of the innate immune system with specificity for different pathogen classes. It occurs in the context of numerous interactions with leukocytes, but here we focus on intrinsic epithelial mechanisms. Type 1 immune responses are directed primarily at intracellular pathogens, particularly viruses. Prominent stimuli include microbial nucleic acids and interferons released from neighboring epithelial cells. Epithelial responses revolve around changes in the expression of interferon-sensitive genes (ISGs) that interfere with viral replication, as well as the further induction of interferons that signal in autocrine and paracrine manners. Type 2 immune responses are directed primarily at helminths and fungi. Prominent pathogen stimuli include proteases and chitin, and important responses include mucin hypersecretion and chitinase release. Type 3 immune responses are directed primarily at extracellular microbial pathogens, including bacteria and fungi, as well as viruses during their extracellular phase of infection. Prominent microbial stimuli include bacterial wall components, such as lipopeptides and endotoxin, as well as microbial nucleic acids. Key responses are the release of reactive oxygen species (ROS) and antimicrobial peptides (AMPs). For all three types of response, paracrine signaling to neighboring epithelial cells induces resistance to infection over a wide field. Often, the epithelial effector molecules themselves also have signaling properties, in addition to the release of inflammatory cytokines that boost local innate immunity. Together, these epithelial mechanisms provide a powerful first line of pathogen defense, recruit leukocytes, and instruct adaptive immune responses.


© 2021 Johnston, Goldblatt, Evans, Tuvim and Dickey.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Frontiers in Physiology



Academic Level

medical student



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.