School of Medicine Publications and Presentations

Document Type


Publication Date



Stimuli-responsive nanocarriers have become increasingly important for nucleic acid and drug delivery in cancer therapy. Here, we report the synthesis, characterization and evaluation of disulphide-linked, octadecyl (C18 alkyl) chain-bearing PEGylated generation 3-diaminobutyric polypropylenimine dendrimer-based vesicles (or dendrimersomes) for gene delivery. The lipid-bearing PEGylated dendrimer was successfully synthesized through in situ two-step reaction. It was able to spontaneously self-assemble into stable, cationic, nanosized vesicles, with low critical aggregation concentration value, and also showed redox-responsiveness in presence of a glutathione concentration similar to that of the cytosolic reducing environment. In addition, it was able to condense more than 70% of DNA at dendrimer: DNA weight ratios of 5 : 1 and higher. This dendriplex resulted in an enhanced cellular uptake of DNA at dendrimer: DNA weight ratios of 10 : 1 and 20 : 1, by up to 16-fold and by up to 28-fold compared with naked DNA in PC-3 and DU145 prostate cancer cell lines respectively. At a dendrimer: DNA weight ratio of 20 : 1, it led to an increase in gene expression in PC-3 and DU145 cells, compared with DAB dendriplex. These octadecyl chain-bearing, PEGylated dendrimer-based vesicles are therefore promising redox-sensitive drug and gene delivery systems for potential applications in combination cancer therapy.

Publication Title

Biomaterials Science



Academic Level


Mentor/PI Department

Immunology and Microbiology



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.