Document Type


Publication Date



This study aimed to investigate how mass media in Korea dealt with various issues arising from COVID-19 and the implications of this on statistics education in South Korea during the recent pandemic. We extracted news articles with the keywords “Corona” and “Statistics” from 18 February to 20 May 2020. We employed word frequency analysis, topic modeling, semantic network analysis, hierarchical clustering, and simple linear regression analysis. The main results of this study are as follows. First, the topic modeling analysis revealed four topics, namely “macroeconomy”, “domestic outbreak”, “international outbreak”, and “real estate and stocks”. Second, a simple linear regression analysis displayed two rising topics, “macroeconomy” and “real estate and stocks” and two falling topics, “domestic outbreak” and “international outbreak” regarding the statistics related to COVID-19 as time passed. Based on these findings, we suggest that the high school mathematics curriculum of Korea should be revised to use real-life context to enable integrated education, social justice for statistics education, and simple linear regression analysis.


© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title




Included in

Education Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.