Civil Engineering Faculty Publications and Presentations

Document Type

Article

Publication Date

12-2025

Abstract

Sinkhole formation poses a significant geohazard in karst regions, where unpredictable subsurface erosion often necessitates costly grouting for stabilization. Accurate estimation of grout volume remains a persistent challenge due to spatial variability, site-specific conditions, and the limitations of traditional empirical methods. This study introduces a novel machine learning-based regression model for grout volume prediction that integrates cone penetration test (CPT)-derived Sinkhole Resistance Ratio (SRR) values, spatial correlations between CPT and grouting points (GPs), and field-recorded grout volumes from six sinkhole sites in Florida. Three data transformation methods, the Proximal Allocation Method (PAM), the Equitable Distribution Method (EDM), and the Threshold-based Equitable Distribution Method (TEDM), were applied to distribute grout influence across CPTs, with TEDM demonstrating superior predictive performance. Synthetic data augmentation using spline methodology further improved model robustness. A high-degree polynomial regression model, optimized with ridge regularization, achieved high accuracy (R2 = 0.95; PEV = 0.94) and significantly outperformed existing linear and logarithmic models. Results confirm that lower SRR values correlate with higher grout demand, and the proposed model reliably captures these nonlinear relationships. This research advances sinkhole remediation practice by providing a data-driven, accurate, and generalizable framework for grout volume estimation, enabling more efficient resource allocation and improved project outcomes.

Comments

http://creativecommons.org/licenses/by-nc-nd/4.0/

Publication Title

Artificial Intelligence in Geosciences

DOI

10.1016/j.aiig.2025.100159

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.