Document Type

Article

Publication Date

12-5-2019

Abstract

+e Hall-Petch relation in aluminium is discussed based on the strain gradient plasticity framework. +e thermodynamically consistent gradient-enhanced flow rules for bulk and grain boundaries are developed using the concepts of thermal activation energy and dislocation interaction mechanisms. It is assumed that the thermodynamic microstresses for bulk and grain boundaries have dissipative and energetic contributions, and in turn, both dissipative and energetic material length scale parameters are existent. Accordingly, two-dimensional finite element simulations are performed to analyse characteristics of the Hall–Petch strengthening and the Hall–Petch constants. +e proposed flow rules for the grain boundary are validated using the existing experimental data from literatures. An excellent agreement between the numerical results and the experimental measurements is obtained in the Hall–Petch plot. In addition, it is observed that the Hall–Petch constants do not remain unchanged but vary depending on the strain level.

Comments

© 2019 Yooseob Song et al. Original published version available at https://doi.org/10.1155/2019/7356581

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Advances in Civil Engineering

DOI

10.1155/2019/7356581

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.