Document Type


Publication Date



Dynamic strain aging has a huge effect on the microstructural mechanical behavior of Inconel 718 high-performance alloy when activated. In a number of experimental researches, significant additional hardening due to the dynamic strain aging phenomenon was reported. A constitutive model without considering dynamic strain aging is insufficient to accurately predict the material behavior. In this paper, a new constitutive model for Inconel 718 high-performance alloy is proposed to capture the additional hardening, which is caused by dynamic strain aging, by means of the Weibull distribution probability density function. The derivation of the proposed constitutive relation for the dynamic strain aging-induced flow stress, the athermal flow stress and the thermal flow stress is physically motivated. The developed model is applied to Inconel 718 high-performance alloy to demonstrate its ability to capture the dynamic strain aging behavior, which was observed in the literature across a wide range of temperatures (300–1200 K) and strain rates from quasi-static loading (0.001/s) to dynamic loading (1100/s).


© 2020 Springer Nature Switzerland AG. Original published version available at

First Page


Last Page


Publication Title

Acta Mechanica





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.