Document Type

Conference Proceeding

Publication Date

4-20-2022

Abstract

This paper studies the use of an energy-regenerative tuned mass damper (ER-TMD) to (a) passively control the displacement of superstructure of a two-degree-of-freedom base-isolated building model equipped with elastomeric rubber bearings and (b) simultaneously generate electric energy that can be used to power conventional sensors installed on the building to monitor its response during an earthquake. The proposed passive ER-TMD is composed of two parts: mechanical and electrical. The mechanical part consists of a moving mass (i.e., TMD mass) attached to the base floor through a linear spring-damper system, and the electrical part consists of two large permanent magnets, a rectangular aircore copper coil, and a harvesting circuit designed to maximize the electric power outputted from the proposed ER-TMD. The total damping coefficient of ER-TMD, obtained by adding up the damping effects of the mechanical and electrical parts, is variable and depends on the amplitude of vibration during the earthquake. A parametric study is carried out to find the optimum damping coefficient of proposed ER-TMD. The numerical results show that the proposed ER-TMD can limit the displacement of superstructure to a safe level while it is capable of generating an average electric power about 0.5W which is large enough to power a conventional accelerometer when the building is subjected to an earthquake with the intensity similar to that of maximum considered earthquake (MCE) as defined by ASCE 7–10.

Comments

© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in SPIE Proceedings or SPIE Journals on the SPIE Digital Library (hereinafter "publications") the right to post an author-prepared version or an official version (preferred) of the publication on an internal or external server controlled exclusively by the author/employer or the entity funding the research, provided that (a) such posting is noncommercial in nature and the publication is made available to users without charge; (b) an appropriate copyright notice and citation appear with the publication; and (c) a link to SPIE's official online version of the publication is provided using the item's DOI.

Publication Title

Proc. SPIE 12043, Active and Passive Smart Structures and Integrated Systems XVI

DOI

https://doi.org/10.1117/12.2610866

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.