Document Type
Conference Proceeding
Publication Date
4-20-2022
Abstract
This paper studies the use of an energy-regenerative tuned mass damper (ER-TMD) to (a) passively control the displacement of superstructure of a two-degree-of-freedom base-isolated building model equipped with elastomeric rubber bearings and (b) simultaneously generate electric energy that can be used to power conventional sensors installed on the building to monitor its response during an earthquake. The proposed passive ER-TMD is composed of two parts: mechanical and electrical. The mechanical part consists of a moving mass (i.e., TMD mass) attached to the base floor through a linear spring-damper system, and the electrical part consists of two large permanent magnets, a rectangular aircore copper coil, and a harvesting circuit designed to maximize the electric power outputted from the proposed ER-TMD. The total damping coefficient of ER-TMD, obtained by adding up the damping effects of the mechanical and electrical parts, is variable and depends on the amplitude of vibration during the earthquake. A parametric study is carried out to find the optimum damping coefficient of proposed ER-TMD. The numerical results show that the proposed ER-TMD can limit the displacement of superstructure to a safe level while it is capable of generating an average electric power about 0.5W which is large enough to power a conventional accelerometer when the building is subjected to an earthquake with the intensity similar to that of maximum considered earthquake (MCE) as defined by ASCE 7–10.
Recommended Citation
Mohsen Amjadian "A study on the use of an energy-regenerative tuned mass damper for vibration control and monitoring of base-isolated buildings", Proc. SPIE 12043, Active and Passive Smart Structures and Integrated Systems XVI, 120430R (20 April 2022); https://doi.org/10.1117/12.2610866
Publication Title
Proc. SPIE 12043, Active and Passive Smart Structures and Integrated Systems XVI
DOI
https://doi.org/10.1117/12.2610866
Comments
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
SPIE grants to authors (and their employers) of papers, posters, and presentation recordings published in SPIE Proceedings or SPIE Journals on the SPIE Digital Library (hereinafter "publications") the right to post an author-prepared version or an official version (preferred) of the publication on an internal or external server controlled exclusively by the author/employer or the entity funding the research, provided that (a) such posting is noncommercial in nature and the publication is made available to users without charge; (b) an appropriate copyright notice and citation appear with the publication; and (c) a link to SPIE's official online version of the publication is provided using the item's DOI.